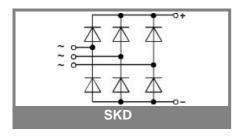
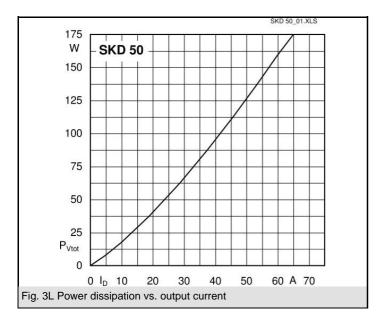


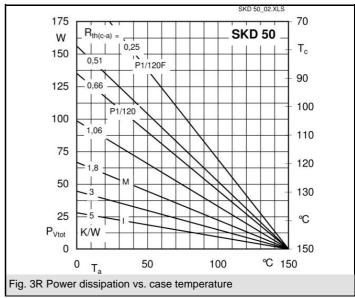
V_{RSM}, V_{RRM}	V_{VRMS}	$I_D = 50 \text{ A } (T_c = 92 \text{ °C})$	C _{max}	R_{min}
V	V	Types	μF	Ω
200		SKD 50/02A3		0,1
400		SKD 50/04A3		0,2
800		SKD 50/08A3		0,4
1200		SKD 50/12A3		0,6
1400		SKD 50/14A3		0,7
1600		SKD 50/16A3		0,8

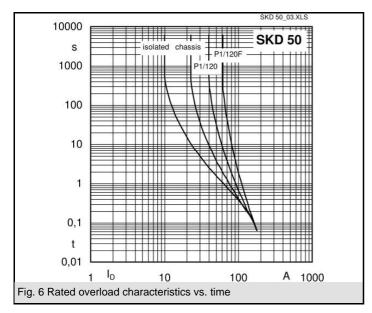
Power Bridge Rectifiers

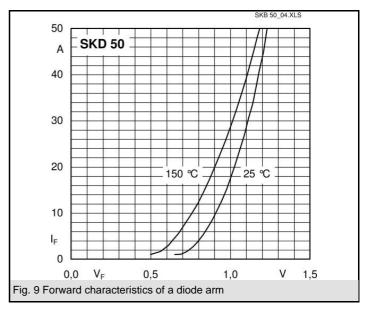
SKD 50

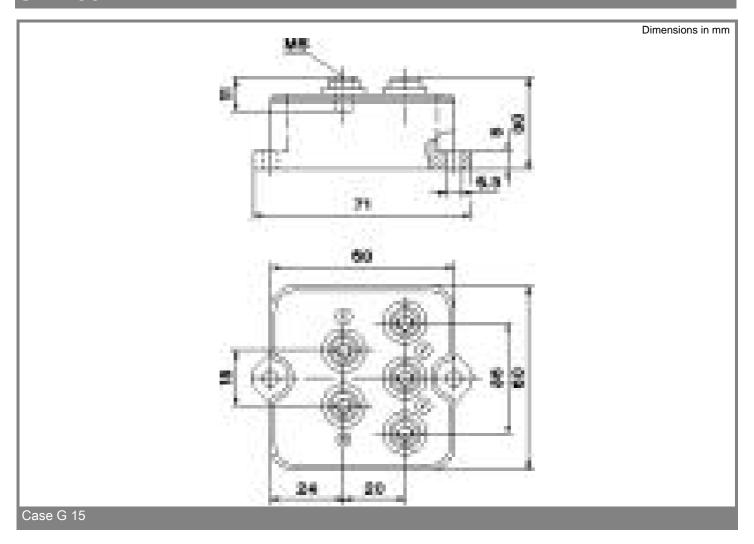

Features


- Isolated metal case with screw terminals
- Blocking voltage up to 1600 V
- High surge current
- · Easy chassis mounting


Typical Applications


- Three phase rectifiers for power supplies
- Input rectifiers for variable frequency drives
- Rectifiers for DC motor field supplies
- Battery charger rectifiers
- Recommended snubber network: RC: 0.1 μ F, 50 Ω (P $_{R}$ = 1 W)
- Freely suspended or mounted on an insulator
- 2) Mounted on a painted metal sheet of min. 250 x 250 x 1 mm


Symbol	Conditions	Values	Units
I _D	T _a = 45 °C, isolated ¹⁾	10	Α
_	T _a = 45 °C, chassis ²⁾	22	Α
I _{DCL}	T _a = 45 °C, isolated ¹⁾	10	Α
	T _a = 45 °C, chassis ²⁾	22	Α
	T _a = 35 °C, P1A/120 F	60	Α
I _{FSM}	T _{vi} = 25 °C, 10 ms	750	Α
	T _{vi} = 150 °C, 10 ms	600	Α
i²t	T _{vj} = 25 °C, 8,3 10 ms	2800	A²s
	T _{vj} = 150 °C, 8,3 10 ms	1800	A²s
V _F	T _{vi} = 25°C, I _F = 150 A	max. 1,6	V
$V_{(TO)}$	T _{vi} = 150°C	max. 0,85	V
r _T	T _{vi} = 150°C	max. 8	mΩ
I _{RD}	$T_{vj}^{s} = 25^{\circ}C, V_{RD} = V_{RRM}$	1000	μA
	$T_{vj}^{3} = {^{\circ}C}, V_{RD} = V_{RRM} \ge V$		μA
I_{RD}	$T_{vj}^{3} = 150^{\circ}\text{C}, V_{RD} = V_{RRM}$	10	mA
	$T_{vj}^{3} = {^{\circ}C}, V_{RD} = V_{RRM} \ge V$		mA
t _{rr}	$T_{vj} = 25^{\circ}C$	10	μs
f_G		2000	Hz
R _{th(j-a)}	isolated ¹⁾	5,5	K/W
() =/	chassis ²⁾	2,3	K/W
$R_{th(j-c)}$	total	0,45	K/W
R _{th(c-s)}	total	0,06	K/W
T _{vi}		- 40 + 150	°C
T _{stg}		- 55 + 150	°C
V _{isol}	a. c. 50 60 Hz; r.m.s.; 1 s / 1 min.	3000 / 2500	V~
M _s	to heatsink	5 ± 15 %	Nm
M_t	to terminals	3 ± 15 %	Nm
a		5 * 9,81	m/s²
w		250	g
Fu		50	А
Case		G 15	



SKD 50

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.